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Specification

The specification of path analysis (PA) models, confirmatory factor analysis (CFA) mea-
surement models, and structural regression (SR) models is the topic of this chapter. Out-
lined first are the basic steps of SEM and graphical symbols used in model diagrams. 
Some straightforward rules are suggested for counting the number of observations 
(which is not the sample size) in the analysis and the number of model parameters. 
Both of these quantities are needed for checking model identification (next chapter). 
Actual research examples dealt with in more detail in later chapters are also intro-
duced. The main goal of this presentation is to give you a better sense of the kinds of 
hypotheses that can be tested with core structural equation models.

STEPS OF SEM

Six basic steps are followed in most analyses, and two additional optional steps, in a per-
fect world, would be carried out in every analysis. Review of these steps will help you to 
understand (1) the relation of specification, the main topic of this chapter, to later steps 
of SEM and (2) the utmost importance of specification.

Basic Steps

The basic steps are listed next and then discussed afterward, and a flowchart of these 
steps is presented in Figure 5.1. These steps are actually iterative because problems at a 
later step may require a return to an earlier step. (Later chapters elaborate specific issues 
at each step beyond specification for particular SEM techniques.)

1. Specify the model.
2. Evaluate model identification (if not identified, go back to step 1).
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3. Select the measures (operationalize the constructs) and collect, prepare, and 
screen the data.

4. Estimate the model:

a. Evaluate model fit (if poor, skip to step 5).
b. Interpret parameter estimates.
c. Consider equivalent or near-equivalent models (skip to step 6).

5. Respecify the model (return to step 4).
6. Report the results.

Specification

The representation of your hypotheses in the form of a structural equation model is 
specification. Many researchers begin the process of specification by drawing a model 
diagram using a set of more or less standard graphical symbols (defined later), but the 
model can alternatively be described by a series of equations. These equations define 
the model’s parameters, which correspond to presumed relations among observed or 

FIGURE 5.1. Flowchart of the basic steps of SEM.
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latent variables that the computer eventually estimates with sample data. Specification 
is the most important step. This is because results from later steps assume that the model 
is basically correct. I also suggest that you make a list of possible changes to the initial 
model that would be justified according to theory or empirical results. This is because 
it is often necessary to respecify models (step 5), and respecification should respect the 
same principles as specification.

Identification

If life were fair, the researcher could proceed directly from specification to collection of 
the data to estimation. Unfortunately, the analysis of a structural equation model is not 
always so straightforward. The problem that potentially complicates the analysis is that 
of identification. A model is identified if it is theoretically possible for the computer to 
derive a unique estimate of every model parameter. Otherwise, the model is not identi-
fied. The word “theoretically” emphasizes identification as a property of the model and 
not of the data. For example, if a model is not identified, then it remains so regardless 
of the sample size (N = 100, 1,000, etc.). Therefore, models that are not identified should 
be respecified (return to step 1); otherwise, attempts to analyze them may be fruitless. 
Different types of structural equation models must meet the specific requirements for 
identification that are described in Chapter 6.

Measure Selection and Data Collection

The various activities for this step—select good measures, collect the data, and screen 
them—were discussed in Chapter 3.

Estimation

This step involves using an SEM computer tool to conduct the analysis. Several things 
take place at this step: (1) Evaluate model fit, which means determine how well the 
model explains the data. Perhaps more often than not, researchers’ initial models do 
not fit the data very well. When (not if) this happens to you, skip the rest of this step 
and go to the next, respecification, and then reanalyze the respecified model using the 
same data. Assuming satisfactory model fit, then (2) interpret the parameter estimates. 
In written summaries, too many researchers fail to interpret the parameter estimates 
for specific effects. Perhaps concern for overall model fit is so great that relatively little 
attention is paid to whether estimates of its parameters are meaningful (Kaplan, 2009). 
Next, (3) consider equivalent or near-equivalent models. Recall that an equivalent model 
explains the data just as well as the researcher’s preferred model but does so with a dif-
ferent configuration of hypothesized relations among the same variables (Chapter 1). 
For a given model, there may be many—and in some cases infinitely many—equivalent 
versions. Thus, the researcher needs to explain why his or her preferred model should 
not be rejected in favor of statistically equivalent ones. Too many authors of SEM stud-
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ies fail to even acknowledge the existence of equivalent models (MacCallum & Austin, 
2000). There may also be near-equivalent models that fit the same data just about as well 
as the researcher’s preferred model, but not exactly so. Near-equivalent models are often 
just as critical a validity threat as equivalent models, if not even more so.

Respecification

A researcher usually arrives at this step because the fit of his or her initial model is poor. 
In the context of model generation, now is the time to refer to that list of theoretically 
justifiable possible changes I suggested you make when you specified the initial model. 
We will deal with respecification in more detail in Chapter 8, but a bottom line of that 
discussion is that a model’s respecification should be guided more by rational consider-
ations than purely statistical ones. Any respecified model must be identified; otherwise, 
you will be “stuck” at this step until you have an estimable model.

Reporting the Results

The final step is to accurately and completely describe the analysis in written reports. 
The fact that too many published articles that concern SEM are seriously flawed in this 
regard was previously discussed. These blatant shortcomings are surprising considering 
that there are published guidelines for reporting results of SEM (e.g., Boomsma, 2000; 
McDonald & Ho, 2002; Schreiber, Nora, Stage, Barlow, & King, 2006). An integrated set 
of suggestions for reporting the results of SEM analyses is presented in Chapter 10.

Optional Steps

Two optional steps in SEM could be added to the basic ones just described:

7. Replicate the results.
8. Apply the results.

Replication

Structural equation models are seldom estimated across independent samples either by 
the same researchers who collected the original data (internal replication) or by other 
researchers who did not (external replication). The need for large samples in SEM com-
plicates replication. Nevertheless, it is critical to eventually replicate a structural equa-
tion model if it is ever to represent anything beyond a mere statistical exercise.

Application

Kaplan (2009) notes that despite about 40 years of application of SEM in the behavioral 
sciences, rarely are results from SEM analyses used for policy or clinically relevant pre-
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diction studies. Neglecting to properly carry out the basic steps (1–6) may be part of the 
problem.

The ultimate goal of SEM—or any other type of model-fitting technique—is to 
attain what I refer to as statistical beauty, which means that the final retained model 
(if any):

1. Has a clear theoretical rationale (i.e., it makes sense).
2. Differentiates between what is known and what is unknown—that is, what is 

the model’s range of convenience, or limits to its generality?
3. Sets conditions for posing new questions.

That most applications of SEM fall short of these goals should be taken as a positive 
incentive for all of us to do better. These issues are elaborated in Chapter 8 about hypoth-
esis testing in SEM.

MODEL DIAGRAM SYMBOLS

Model diagrams are represented in this book by using symbols from the McArdle–
McDonald reticular action model (RAM). The RAM symbolism explicitly represents 
every model parameter. This property has pedagogical value for learning about SEM. 
It also helps you to avoid mistakes when you are translating a diagram to the syntax 
of a particular SEM computer tool. Part of RAM symbolism is universal in SEM. This 
includes the representation in diagrams of

1. Observed variables with squares or rectangles (e.g.,  ,  ).
2. Latent variables with circles or ellipses (e.g.,  ,  ).
3. Hypothesized directional effects of one variable on another, or direct effects, 

with a line with a single arrowhead (e.g., l).
4. Covariances (in the unstandardized solution) or correlations (in the standard-

ized one) between independent variables—referred to in SEM as exogenous 
variables—with a curved line with two arrowheads ( ).

The symbol described in (4) also designates an unanalyzed association between 
two exogenous variables. Although such associations are estimated by the computer, 
they are unanalyzed in the sense that no prediction is put forward about why the two 
exogenous variables covary (e.g., does one cause the other?—do they have a common 
cause?). In RAM symbolism (this next symbol is not universal), two-headed curved 
arrows that exit and reenter the same variable ( ) represent the variance of an exog-
enous variable. Because the causes of exogenous variables are not represented in model 
diagrams, the exogenous variables are considered free to both vary and covary. The 
symbols  and , respectively, reflect these assumptions. Specifically, the symbol 
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 will connect every pair of observed exogenous variables, and the symbol  will 
connect every observed or latent exogenous variable to itself in RAM symbolism.

This is not so for dependent (outcome, criterion) variables in model diagrams, which 
are referred to as endogenous variables. Unlike exogenous variables, the presumed 
causes of endogenous variables are explicitly represented in the model. Accordingly, 
endogenous variables are not free to vary or covary. This means in model diagrams that 
the symbol for an unanalyzed association, or , does not directly connect two different 
endogenous variables, and the symbol for a variance  will not originate from and end 
with any endogenous variable. Instead, the model as a whole represents the researcher’s 
account about why endogenous variables covary with each other and also with the exog-
enous variables. During the analysis, this “explanation” based on the model is compared 
with the sample covariances (the data). If the two sets of covariances, predicted and 
observed, are similar, the model is said to fit the data; otherwise, the “explanation” is 
rejected.

Model parameters in RAM symbolism are represented with only three symbols: 
l, , and . The following rule for defining parameters in words parallels these 
symbols and is consistent with the Bentler–Weeks representational system for SEM that 
underlies the EQS computer program:

Parameters of structural equation models when means are not ana- (Rule 5.1)
lyzed include (1) direct effects on endogenous variables from other 
variables, either exogenous or endogenous; and (2) the variances and 
covariances of exogenous variables.

That’s it. The simple rule just stated applies to all of the core SEM models described 
in this chapter when means are not analyzed (i.e., the model has a covariance struc-
ture only, not also a mean structure). An advantage of RAM symbolism is that you can 
quickly determine the number of model parameters simply by counting the number of 
l, , and  symbols in its diagram. Several examples and exercises in counting 
parameters are presented later.

As mentioned in the previous chapter on SEM computer tools, model diagrams in 
Amos and Mx Graph are based on RAM symbolism. In other programs, such as LISREL 
and Mplus, error terms are represented by a line with a single arrowhead that points to 
the corresponding endogenous variables. This representation is more compact, but do 
not forget that error terms have parameters (variances) that are typically estimated in 
the analysis. This is one advantage of RAM symbolism: what you see is what you get 
concerning model parameters that require statistical estimates.

SPECIFICATION CONCEPTS

Considered next are key issues in model specification.
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What to Include

The following is a basic specification issue: given a phenomenon of interest—health sta-
tus, unemployment, and so on—what variables affect it? Because the literature for newer 
research areas can be limited, so decisions about what to include in the model must 
sometimes be guided more by the researcher’s experience than by published reports. 
Consulting with experts in the field about plausible specifications may also help. In 
more established areas, sometimes there is too much information. That is, so many 
potential causal variables may be mentioned in the literature that it is virtually impos-
sible to include them all. To cope, the researcher must again rely on his or her judgment 
about the most crucial variables.

The specification error of omitting causal variables that covary with others in the 
model has the same general consequences in SEM as in multiple regression (MR) (Chap-
ter 2). However, it is unrealistic to expect all causal variables to be measured. Given 
that most structural equation models may be misspecified in this regard, the best way 
to minimize potential bias is preventive: make an omitted variable an included one 
through careful review of extant theory and research.

How to Measure the Hypothetical Construct

The selection of measures is a recurrent problem in research, and this is no less true in 
SEM (Chapter 3). Score reliability is especially important in the SEM technique of PA, 
which is characterized by single-indicator measurement. This means that there is only 
one observed measure of each construct. Therefore, it is critical that each measure have 
good psychometric characteristics. It is also assumed in PA that the exogenous variables 
are measured without error (rXX = 1.00). The potential consequences of measurement 
error in PA are basically the same as those in MR (Chapter 2). Recall that disattenuat-
ing correlations for measurement error is one way to take score reliability into account 
(Equation 3.7), but this is not a standard part of PA. However, a method to do so for 
single-indicator measurement is described in Chapter 10.

Another approach is multiple-indicator measurement, in which more than one 
observed variable is used to measure the same construct. Suppose that a researcher 
is interested in measuring reading skill among Grade 4 children. In a single-indicator 
approach, the researcher would be forced to select a sole measure of reading skill, such 
as a word recognition task. However, a single task would reflect just one facet of read-
ing, and some of its score variance may be specific to that task, not to general reading 
ability per se. In a multiple-indicator approach, additional measures can be selected and 
administered. In this example, a second measure could be a comprehension task, and 
a third measure could involve word attack skills. Use of the three tasks together may 
reflect more aspects of reading, and the reliability of factor measurement tends to be 
higher with multiple indicators.

Each measure in a multiple-indicator approach is represented in the model as a sep-
arate indicator of the same underlying factor. This representation assumes convergent 
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validity. Specifically, scores from multiple indicators presumed to measure a common 
construct should be positively correlated. Otherwise, the measurement model for these 
indicators may be rejected. The technique of CFA and the analysis of SR models both 
feature multiple-indicator measurement. The analysis of an SR model in particular can 
be seen as a type of latent-variable PA that accommodates multiple-indicator measure-
ment.

Directionality

The specification of directionalities of presumed causal effects, or effect priority, is an 
important part of SEM. In the technique of PA, specifications about directionality con-
cern observed variables only. In path diagrams, direct effects represented by the sym-
bol l (i.e., paths) correspond to the researcher’s hypotheses about effect priority. For 
example, if X and Y are two observed variables, the specification X l Y implies that X 
is causally prior to Y (X affects Y). This specification does not rule out other causes of Y. 
If other variables are believed to also affect Y, then the corresponding direct effects (e.g., 
W l Y) can be added to the model, too.

Five general conditions must be met before one can reasonably infer a cause–effect 
relation (e.g., Mulaik, 2009; Pearl, 2000):

1. Temporal precedence. The presumed cause (e.g., X) must occur before the pre-
sumed effect (e.g., Y).1

2. Association. There is an observed covariation; that is, variation in the presumed 
cause must be related to that in the presumed effect.

3. Isolation. There are no other plausible explanations (e.g., extraneous variables) 
of the covariation between the presumed cause and the presumed effect.

4. Correct effect priority. The direction of the causal relation is correctly specified. 
That is, X indeed causes Y (X l Y) instead of the reverse (Y l X) or X and Y 
cause each other in a reciprocal manner (X  Y).

5. Known distributional form. When dealing with probabilistic causality instead 
of deterministic causality, the forms of the distributions of the parameters are 
specified. Deterministic causality assumes that given a change in the causal 
variable, the same consequence is observed in all cases for the affected variable. 
It is probabilistic causality that is modeled in SEM, and it allows for changes to 
occur in affected variables at some probability < 1.0.2 Estimation of these prob-
abilities (effects) with sample data are typically based on specific distributional 

1See Rosenberg (1998) for a discussion of Immanuel Kant’s arguments about the possibility of simultaneous 
causation.

2Kenny (1979) suggested that probabilistic causality models are compatible with the view that some portion 
of unexplained variance is fundamentally unknowable because it reflects, for lack of a better term, free 
will—the ability of people to act on occasion outside of external influences on them.
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assumptions. If these assumptions are not reasonable, then the estimates may 
be incorrect.

The second and third conditions just listed require that the association between X 
and Y is not spurious when controlling for common causes or when other causes of Y are 
included in the model (e.g., W). Temporal precedence is established in experimental or 
quasi-experimental designs when treatment begins (and perhaps ends, too) before out-
come is measured. In nonexperimental designs, the hypothesis that X causes Y would be 
bolstered if X is measured before Y; that is, the design is longitudinal. But the expected 
value of the covariance between X and Y in a longitudinal design could still be relatively 
large even if Y causes X and the effect (X) is measured before the cause (Y) (Bollen, 1989, 
pp. 61–65). This could happen because X would have been affected by Y before either 
variable was actually measured in a longitudinal study. This phenomenon explains the 
fourth requirement for correct specification of directionality: Even if X actually causes 
Y, the magnitude of their association may be low if the interval between their mea-
surements is either too short (effects take time to materialize) or too long (temporary 
effects have dissipated). The fifth requirement explains the importance of distributional 
assumptions: Estimates of causal effects may be biased if assumptions about their distri-
butional forms, such as normality, across random samples are not tenable.

The assessment of variables at different times provides a measurement framework 
consistent with the specification of directional effects. But longitudinal designs pose 
potential difficulties, such as case attrition and extra resource demands. This is prob-
ably why most SEM studies feature concurrent rather than longitudinal measurement. 
If all variables are measured simultaneously, however, it is not possible to demonstrate 
temporal precedence. Therefore, the researcher needs a clear, substantive rationale for 
specifying that X causes Y instead of the reverse (or that X and Y mutually influence 
each other) when all variables are measured at once. This process relies heavily on the 
researcher to rule out alternative explanations of the association between X and Y and 
also to measure other presumed causes of Y. Both require strong knowledge about the 
phenomena under study. If the researcher cannot give a cogent account of directional-
ity specifications, then causal inferences in nonexperimental designs are unwarranted. 
This is why many researchers are skeptical about inferring causation in nonexperimen-
tal designs. An example follows.

Lynam, Moffit, and Stouthamer–Loeber (1993) hypothesized that poor verbal abil-
ity is a cause of delinquency, but both variables were measured simultaneously in their 
sample. This hypothesis raises some questions: Why this particular direction of causa-
tion? Is it not also plausible that certain behaviors associated with delinquency, such 
as truancy, could impair verbal ability? What about other causes of delinquency? Some 
arguments offered by Lynam et al. are summarized next: Their participants were rel-
atively young (about 12 years), which may preclude delinquent careers long enough 
to affect verbal ability. They cited the results of prospective studies which indicated 
that low verbal ability precedes antisocial acts. Lynam et al. measured other presumed 
causes of delinquency, including social class and motivation, and controlled for these 
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variables in the analysis. The particular arguments given by Lynam et al. are not above 
criticism (e.g., Block, 1995), but they exemplify the types of arguments that researchers 
should provide to justify directionality specifications. Unfortunately, too few authors of 
nonexperimental studies give such detailed explanations.

Given a single SEM study in which hypotheses about effect priority are tested, 
it would be almost impossible to believe that all of the logical and statistical require-
ments had been satisfied for interpreting the results as indicating causality. This is why 
the interpretation that direct effects in structural equation models correspond to true 
causal relations is typically without basis. It is only with the accumulation of the follow-
ing types of evidence that the results of SEM analyses may indicate causality (Mulaik, 
2000): (1) replication of the model across independent samples; (2) elimination of plau-
sible equivalent or near-equivalent models; (3) corroborating evidence from empirical 
studies of variables in the model that are manipulable; and (4) the accurate prediction of 
the effects of interventions.

Although as students we are told time and again that correlation does not imply cau-
sation, too many researchers seem to forget this essential truth. For example, Robinson, 
Levin, Thomas, Pituch, and Vaughn (2007) reviewed about 275 articles published in 
five different journals in the area of teaching and learning. They found that (1) the pro-
portion of studies based on experimental or quasi-experimental designs declined from 
about 45% in 1994 to 33% in 2004. Nevertheless, (2) the proportion of nonexperimental 
studies containing claims for causality increased from 34% in 1994 to 43% in 2004. It 
seems that researchers in the teaching-and-learning area—and, to be fair, in other areas, 
too—may have become less cautious than they should be concerning the inference of 
causation from correlation. Robinson et al. (2007) noted that more researchers in the 
teaching-and-learning area were using SEM in 2004 compared with 1994. Perhaps the 
increased use of SEM explains the apparent increased willingness to infer causation in 
nonexperimental designs, but the technique does not justify it.

There are basically three options in SEM if a researcher is uncertain about direc-
tionality: (1) specify a structural equation model but without directionality specifica-
tions between key variables; (2) specify and test alternative models, each with different 
causal directionalities; or (3) include reciprocal effects in the model as a way to cover 
both possibilities. The first option just mentioned concerns exogenous variables, which 
are basically always assumed to covary (e.g., X1  X2), but there is no specification 
about direct effects between exogenous variables. The specification of unanalyzed asso-
ciations between exogenous variables in SEM is consistent with the absence of hypoth-
eses of direct or indirect effects between such variables. A problem with the second 
option is that it can happen in SEM that different models, such as model 1 with Y1 l Y2 
and model 2 with Y2 l Y1, may fit the same data equally well (they are equivalent), or 
nearly so. When this occurs, there is no statistical basis for choosing one model over 
another. The third option concerns the specification of reciprocal effects (e.g., Y1   Y2), 
but the specification of such effects is not a simple matter. This point is elaborated on 
later, but the inclusion of even one reciprocal effect in a model can make it more dif-
ficult to analyze. So there are potential costs to the inclusion of reciprocal effects as a 
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hedge against uncertainty about directionality. If you are fundamentally uncertain about 
directionality, then you may not be ready to use SEM. In this case, conduct a minimally 
sufficient analysis, or use the simplest technique that will get the job done (Wilkinson 
& the Task Force on Statistical Inference, 1999). Simpler methods include regression 
techniques, such as canonical correlation when there are multiple predictor and out-
come variables. A canonical correlation analysis requires no directionality assumptions 
among the variables in either set, predictor or outcome. There is no “embarrassment” 
in using a simpler statistical technique over a more complicated one, especially if the 
simpler technique is sufficient to test your hypotheses and if your comprehension of the 
more complex method is not strong. In general, it is better to resist the temptation to 
use the “latest and greatest” (i.e., more complicated) statistical technique when a simpler 
method will accomplish the task.

Model Complexity

There is another limit that must be respected in specification. It concerns the total num-
ber of parameters that can be estimated, or model complexity. This total is limited by 
the number of observations available for the analysis. In this context, the number of 
observations is not the sample size. Instead, it is literally the number of entries in the 
sample covariance matrix in lower diagonal form.3 The number of observations can be 
calculated with a simple rule:

If v is the number of observed variables, then the number of obser- (Rule 5.2)
vations equals v (v + 1)/2 when means are not analyzed.

Suppose that v = 4 observed variables are represented in a model. The number of obser-
vations is 4(5)/2, or 10. This count (10) equals the total number of variances (4) and 
unique covariances (below the diagonal, or 6) in the data matrix. With v = 4, the greatest 
number of parameters that could be estimated by the computer is 10. Fewer parameters 
can be estimated in a more parsimonious model, but not > 10. The number of observa-
tions has nothing to do with sample size. If four variables are measured for 100 or 1,000 
cases, the number of observations is still 10. Adding cases does not increase the number 
of observations; only adding variables can do so.

The difference between the number of observations and the number of its param-
eters is the model degrees of freedom, or

 dfM = p – q (5.1)

where p is the number of observations (Rule 5.2) and q is the number of estimated 

3Confusingly, LISREL uses the term number of observations in dialog boxes to refer to sample size, not the 
number of variances and unique covariances.
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parameters (Rule 5.1). The requirement that there be at least as many observations as 
parameters can be expressed as the requirement that dfM q 0.

A model with more estimated parameters than observations (dfM < 0) is not ame-
nable to empirical analysis. This is because such a model is not identified. If you tried 
to estimate a model with negative degrees of freedom, an SEM computer tool would 
likely terminate its run with error messages. Most models with zero degrees of freedom 
(dfM = 0) perfectly fit the data. But models that are just as complex as the data are not 
interesting because they test no particular hypothesis. Models with positive degrees of 
freedom generally do not have perfect fit. This is because dfM > 0 allows for the possibil-
ity of model–data discrepancies. Raykov and Marcoulides (2000) describe each degree 
of freedom as a dimension along which the model can potentially be rejected. Thus, 
retained models with greater degrees of freedom have withstood a greater potential for 
rejection. The idea underlies the parsimony principle: given two models with similar 
fit to the same data, the simpler model is preferred, assuming that the model is theoreti-
cally plausible.

Parameter Status

Each model parameter can be free, fixed, or constrained depending on its specification. 
A free parameter is to be estimated by the computer with the data. In contrast, a fixed 
parameter is specified to equal a constant. The computer “accepts” this constant as 
the estimate regardless of the data. For example, the hypothesis that X has no direct 
effect on Y corresponds to the specification that the coefficient for the path X l Y is 
fixed to zero. It is common in SEM to test hypotheses by specifying that a previously 
fixed-to-zero parameter becomes a free parameter, or vice versa. Results of such analy-
ses may indicate whether to respecify a model by making it more complex (an effect is 
added—a fixed parameter becomes a free parameter) or more parsimonious (an effect is 
dropped—a free parameter becomes a fixed parameter).

A constrained parameter is estimated by the computer within some restriction, 
but it is not fixed to equal a constant. The restriction typically concerns the relative val-
ues of other constrained parameters. An equality constraint means that the estimates 
of two or more parameters are forced to be equal. Suppose that an equality constraint 
is imposed on the two direct effects that make up a feedback loop (e.g., Y1  Y2). This 
constraint simplifies the analysis because only one coefficient is needed rather than 
two. In a multiple-sample SEM analysis, a cross-group equality constraint forces the 
computer to derive equal estimates of that parameter across all groups. The specifica-
tion corresponds to the null hypothesis that the parameter is equal in all populations 
from which the samples were drawn. How to analyze a structural equation model across 
multiple samples is explained in Chapter 9.

Other kinds of constraints are not seen as often. A proportionality constraint 
forces one parameter estimate to be some proportion of the other. For instance, the 
coefficient for one direct effect in a reciprocal relation may be forced to be three times 
the value of the other coefficient. An inequality constraint forces the value of a param-
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eter estimate to be either less than or greater than the value of a specified constant. 
The specification that the value of an unstandardized coefficient must be > 5.00 is an 
example of an inequality constraint. The imposition of proportionality or inequality 
constraints generally requires knowledge about the relative magnitudes of effects, but 
such knowledge is rare in the behavioral sciences. A nonlinear constraint imposes 
a nonlinear relation between two parameter estimates. For example, the value of one 
estimate may be forced to equal the square of another. Nonlinear constraints are used 
in some methods to estimate curvilinear or interactive effects of latent variables, a 
topic covered in Chapter 12.

PATH ANALYSIS MODELS

Although PA is the oldest member of the SEM family, it is not obsolete. About 25% of 
roughly 500 articles reviewed by MacCallum and Austin (2000) concerned path mod-
els, so PA is still widely used. There are also times when there is just a single observed 
measure of each construct, and PA is a single-indicator technique. Finally, if you master 
the fundamentals of PA, you will be better able to understand and critique a wider variety of 
structural equation models. So read this section carefully even if you are more interested 
in latent variable methods in SEM.

Elemental Models

Presented in Figure 5.2 are the diagrams in RAM symbolism of three path models. 
Essentially, all more complex models can be constructed from these elemental models. 
A path model is a structural model for observed variables, and a structural model rep-
resents hypotheses about effect priority. The path model of Figure 5.2(a) represents the 
hypothesis that X is a cause of Y. By convention, causally prior variables are represented 
in the left part of the diagram, and their effects are represented in the right part. The 
line in the figure with the single arrowhead (l) that points from X to Y represents the 
corresponding direct effect. Statistical estimates of direct effects are path coefficients, 
which are interpreted just as regression coefficients in MR.

Variable X in Figure 5.2(a) is exogenous because its causes are not represented in 
the model. Accordingly, the symbol  represents the fact that X is free to vary. In 
contrast, variable Y in Figure 5.2(a) is endogenous and thus is not free to vary. Each 
endogenous variable has a disturbance, which for the model of Figure 5.2(a) is an error 
(residual) term, designated as D, that represents unexplained variance in Y. It is the 
presence of disturbances in structural models that signal the assumption of probabilistic 
causality. Because disturbances can be considered latent variables in their own right, 
they are represented with circles in RAM symbolism. Theoretically, a disturbance can 
be seen as a “proxy” or composite variable that represents all unmeasured causes of the 
corresponding endogenous variable. Because the nature and number of these omitted 
causes is unknown as far as the model is concerned, disturbances can be viewed as 
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unmeasured (latent) exogenous variables. Accordingly, the symbol for the variance of an 
exogenous variable ( ) appears next to the disturbance in Figure 5.2(a).

Measurement error in the endogenous variable Y is manifested in its disturbance, so 
disturbances typically reflect both omitted causes and score unreliability. If scores on Y 
are unreliable, then its disturbance will be relatively large, which would be confounded 
with omitted causes. The path that points from the disturbance to the endogenous vari-
able in Figure 5.2(a), or D l Y, represents the direct effect of all unmeasured causes on 
Y. The numeral (1) that appears in the figure next to this path is a scaling constant that 
represents the assignment of a scale to the disturbance. This is necessary because dis-
turbances are latent, and latent variables need scales before the computer can estimate 

FIGURE 5.2. Elemental path models.
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anything about them. A scaling constant for a disturbance is also called an unstan-
dardized residual path coefficient. The concept behind this specification for scaling a 
disturbance is explained in the next chapter, but it is required for identification. In con-
trast, exogenous variables do not have disturbances (e.g., X in Figure 5.2(a)). Therefore, 
it is generally assumed in PA that scores on exogenous variables are perfectly reliable. 
This assumption is just as unrealistic in PA as it is in MR.

Path coefficients are calculated holding all omitted causes constant (pseudoisola-
tion; Chapter 2), which requires the assumption that all unmeasured causes represented 
by the disturbance are uncorrelated with measured causes of the corresponding endog-
enous variable. In Figure 5.2(a), it is assumed that D and X are uncorrelated. This is a 
strong assumption, one that is directly analogous to the assumption of uncorrelated 
residuals and predictors in MR.

The path model of Figure 5.2(b) represents the hypothesis of correlated causes. 
In this case, it is hypothesized that (1) both X1 and X2 are causes of Y, and (2) these 
exogenous variables covary. However, the model gives no account about why X1 and X2 
covary. Accordingly, the curved line with two arrowheads that represents an unana-
lyzed association ( ) connects the squares for the two measured exogenous variables 
in Figure 5.2(b). Together, the symbols  and  in the figure represent the assump-
tions that X1 and X2 are free to, respectively, vary and covary, but for reasons that are 
unknown, at least according to the model. Measured exogenous variables are basically 
always assumed to covary, so the symbol  routinely connects every pair of such vari-
ables in structural models.

Path coefficients for the two direct effects in Figure 5.2(b), X1 l Y and X2 l Y, are 
each estimated controlling for the covariation between X1 and X2, just as in MR. This 
model assumes that all unmeasured causes of Y are uncorrelated with both X1 and X2. 
A natural question is: If measured exogenous variables can have unanalyzed associa-
tions, can a disturbance have an unanalyzed association with a measured exogenous 
variable, such as X1  D? Such an association would imply the presence of an omitted 
cause that is correlated with X1. This seems plausible, but, no, it is not generally possible 
to estimate covariances between and measured and unmeasured exogenous variables. 
(See Kenny, 1979, pp. 93–94 for conditions required to do so.) The only realistic way to 
cope with the restrictive assumption of uncorrelated measured and unmeasured causes 
is through careful specification.

Observe in the path model of Figure 5.2(c) that there are two direct effects on the 
endogenous variable Y2 from other observed variables, one from the exogenous variable 
X and another from the other endogenous variable, Y1. The latter specification gives Y1 a 
dual role as, in the language of regression, both a predictor and a criterion. This dual role 
is described in PA as an indirect effect or a mediator effect.4 Indirect effects involve 
one or more intervening variables, or mediator variables, presumed to “transmit” 

4Note that the separate concept of a “moderator effect” refers to an interaction effect. Likewise, a “moderator 
variable” is one variable involved in interaction effect with another variable. Chapter 12 deals with the 
estimation of interaction effects in SEM.
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some of the causal effects of prior variables onto subsequent variables. For the model 
of Figure 5.2(c), variable X is specified to affect Y2 both directly and indirectly first by 
affecting Y1, and then Y1 in turn is presumed to have an effect on Y2. The entire indirect 
effect just described corresponds to the three-variable chain X l Y1 l Y2.

Here is a concrete example: Roth, Wiebe, Fillingim, and Shay (1989) specified a 
path model of factors presumed to affect illness. Part of their model featured the indirect 
effect

 Exercise l Fitness l Illness

The fitness variable is the mediator, one that, according to the model, is affected by 
exercise (more exercise, better fitness). In turn, fitness affects illness (better fitness, 
less illness). Just as direct effects are estimated in SEM, so too are indirect effects. The 
estimation of indirect effects is so straightforward in SEM that such effects are routinely 
included in structural models, assuming such specifications are theoretically justifi-
able.

Finally, the model of Figure 5.2(c) assumes that (1) the omitted causes of both Y1 
and Y2 are uncorrelated with X and (2) the omitted causes of Y1 are unrelated to those 
of Y2, and vice versa. That is, the disturbances are independent, which is apparent in 
the figure by the absence of the symbol for an unanalyzed association ( ) between D1 
and D2. This specification also represents the hypothesis that the observed covariation 
between that pair of endogenous variables, Y1 and Y2, can be entirely explained by other 
measured variables in the model.

Types of Structural Models

There are two kinds of structural models. Recursive models are the most straight-
forward and have two basic features: their disturbances are uncorrelated, and all causal 
effects are unidirectional. Nonrecursive models have feedback loops or may have cor-
related disturbances. Consider the path models in Figure 5.3. The model of Figure 5.3(a) 
is recursive because its disturbances are independent and no observed variable is repre-
sented as both a cause and effect of another variable, directly or indirectly. For example, 
X1, X2, and Y1 are specified as direct or indirect causes of Y2, but Y2 has no effect back 
onto one of its presumed causes. All of the models in Figure 5.2 are recursive, too. In 
contrast, the model of Figure 5.3(b) has a direct feedback loop in which Y1 and Y2 are 
specified as both causes and effects of each other (Y1  Y2). Each of these two vari-
ables is measured only once and also simultaneously. That is, direct feedback loops are 
estimated with data from a cross-sectional design, not a longitudinal design. Indirect 
feedback loops involve three or more variables, such as

 Y1 l Y2 l Y3 l Y1

Any model with an indirect feedback loop is automatically nonrecursive, too.
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The model of Figure 5.3(b) also has a disturbance covariance (for unstandardized 
variables) or a disturbance correlation (for standardized variables). The term distur-
bance correlation is used from this point on regardless of whether or not the variables 
are standardized. A disturbance correlation, such as D1  D2, reflects the assumption 
that the corresponding endogenous variables (Y1, Y2) share at least one common omit-
ted cause. Unlike unanalyzed associations between measured exogenous variables (e.g., 
X1  X2), the inclusion of disturbance correlations in the model is not routine. Why 
this is true is explained momentarily.

There is another type of path model, one that has unidirectional effects and corre-
lated disturbances; two examples of this type are presented in Figures 5.3(c) and 5.3(d). 
Unfortunately, the classification of such models is not consistent. Some authors call 
these models nonrecursive, whereas others use the term partially recursive. But more 
important than the label for these models is the distinction made in the figure: Partially 
recursive models with a bow-free pattern of disturbance correlations can be treated in 
the analysis just like recursive models. A bow-free pattern means that correlated dis-
turbances are restricted to pairs of endogenous variables without direct effects between 

FIGURE 5.3. Examples of recursive and nonrecursive path models.
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them (see Figure 5.3(c)). In contrast, partially recursive models with a bow pattern of 
disturbance correlations must be treated in the analysis as nonrecursive models. A bow 
pattern means that a disturbance correlation occurs with a direct effect between that 
pair of endogenous variables (see Figure 5.3(d)) (Brito & Pearl, 2003). All ensuing ref-
erences to recursive and nonrecursive models include, respectively, partially recursive 
models without and with direct effects among the endogenous variables.

Implications of the distinction between recursive and nonrecursive structural mod-
els are considered next. The assumptions of recursive models that all causal effects 
are unidirectional and that the disturbances are independent simplify the statistical 
demands for their analysis. For example, in the past MR was used to estimate path 
coefficients and disturbance variances in recursive path models. Today we use SEM 
computer tools to estimate recursive path models and all other kinds of models, too. 
The occurrence of a technical problem in the analysis is less likely for recursive models. 
It is also true that recursive structural models are identified, given that the necessary 
requirements for identification are satisfied (Chapter 6). The same assumptions of recur-
sive models that ease the analytical burden are also restrictive. For example, causal 
effects that are not unidirectional, such as in a feedback loop, or disturbances that are 
correlated in a bow pattern cannot be represented in a recursive model.

The kinds of effects just mentioned can be represented in nonrecursive models, 
but such models require additional assumptions. Kaplan, Harik, and Hotchkiss (2001) 
remind us that data from a cross-sectional design give only a “snapshot” of an ongo-
ing dynamic process. Therefore, the estimation of reciprocal effects in a feedback loop 
with cross-sectional data requires the assumption of equilibrium. This means that any 
changes in the system underlying a presumed feedback relation have already manifested 
their effects and that the system is in a steady state. That is, the values of the estimates 
of the direct effects that make up the feedback loop do not depend on the particular time 
point of data collection. Heise (1975) described equilibrium this way: it means that a 
dynamic system has completed its cycles of response to a set of inputs and that the inputs 
do not vary over time. That is, the causal process has basically dampened out and is not 
just beginning (Kenny, 1979). It is important to realize that there is generally no statis-
tical way to directly evaluate whether the equilibrium assumption is tenable when the 
data are cross-sectional; that is, it must be argued substantively. Kaplan et al. (2001) note 
that rarely is this assumption explicitly acknowledged in the literature on applications of 
SEM where feedback effects are estimated with cross-sectional data. This is unfortunate 
because the results of computer simulation studies by Kaplan et al. (2001) indicate that 
violation of the equilibrium assumption can lead to severely biased estimates of the direct 
effects in feedback loops. Another assumption in the estimation of reciprocal effects in 
feedback loops with cross-sectional data is that of stationarity, the requirement that 
the causal structure does not change over time. Both assumptions just described, that of 
equilibrium and stationarity, are very demanding (i.e., probably unrealistic).

A feedback loop between Y1 and Y2 is represented in Figure 5.4(a) without distur-
bances or other variables. Another way to estimate reciprocal effects requires a longi-
tudinal design where Y1 and Y2 are each measured at q 2 different points in time. For 
example, the symbols Y11 and Y21 in the panel model shown in Figure 5.4(b) without 
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disturbances or other variables represent, respectively, Y1 and Y2 at the first measure-
ment occasion. Likewise, the symbols Y12 and Y22 represent the same two variables at 
the second measurement. Presumed reciprocal causation is represented in Figure 5.4(b) 
by the cross-lag direct effects between Y1 and Y2 measured at different times, such as 
Y11 l Y22 and Y21 l�Y12. A panel model may be recursive or nonrecursive depending 
on its pattern of disturbance correlations.

Panel models for longitudinal data offer potential advantages over models with 
feedback loops for cross-sectional data. One is the explicit representation of a finite 
causal lag that corresponds to the measurement occasions. In this sense, the measure-
ment occasions in a design where all variables are concurrently measured are always 
incorrect, if we assume that causal effects require a finite amount of time. However, the 
analysis of a panel model is no panacea for estimating reciprocal causality. For exam-
ple, it can be difficult to specify measurement occasions that match actual causal lags. 
Panel designs are not generally useful for resolving effect priority between reciprocally 
related variables—for example, does Y1 cause Y2 or vice versa?—unless some restrictive 
assumptions are met, including that of stationarity. Maruyama (1998) reminds us that 
the requirement that there are no omitted causes correlated with those in the model is 
even more critical for panel models because of repeated sampling over time. The com-
plexity of panel models can increase rapidly as more variables are added to the model 
(Cole & Maxwell, 2003). See Frees (2004) for more information about the analysis of 
panel data in longitudinal designs.

For many researchers, the estimation of reciprocal causation between variables 
measured simultaneously is the only viable alternative to a longitudinal design. Given 
all the restrictive assumptions for estimating such effects in a cross-sectional design, 
however, it is critical not to be too cavalier in the specification of feedback loops. One 
example is when different directionalities are each supported by two different theories 
(e.g., Y1 l Y2 according to theory 1, Y2 l Y1 according to theory 2). As mentioned, 
it can happen that two models with different directionality specifications among the 
same variables can fit the same data equally well. An even clearer example is when you 
haven’t really thought through the directionality question. In this case, the specification 
of Y1  Y2 may be a smokescreen that covers up the basic uncertainty.

FIGURE 5.4. Reciprocal causal effects between Y1 and Y2 represented with (a) a direct feedback 
loop based on a cross-sectional design and (b) a cross-lag effect based on a longitudinal design 
(panel model) shown without disturbances or other variables.
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Recall that the presence of a disturbance correlation reflects the assumption that the 
corresponding endogenous variables share at least one common unmeasured cause. The 
disturbances of variables involved in feedback loops are often specified as correlated. 
This specification often makes sense because if variables are presumed to mutually cause 
each other, then it seems plausible to expect that they may have shared omitted causes. 
In fact, the presence of disturbance correlations in particular patterns in nonrecursive 
models helps to determine their identification status (Chapter 6). In recursive models, 
disturbance correlations can be specified only between endogenous variables with no 
direct effect between them (e.g., Figure 5.3(c)). The addition of each disturbance correla-
tion to the model “costs” one degree of freedom and thus makes the model more com-
plicated. If there are substantive reasons for specifying disturbance correlations, then 
it is probably better to estimate the model with these terms than without them. This is 
because the constraint that a disturbance correlation is zero when there are common 
causes tends to redistribute this association toward the exogenous end of the model, 
which can result in biased estimates of direct effects. In general, disturbances should be 
specified as correlated if there are theoretical bases for doing so; otherwise, be wary of 
making the model overly complex by adding parameters without a clear reason.

Another complication of nonrecursive models is that of identification. There are 
some straightforward ways that a researcher can determine whether some, but not all, 
types of nonrecursive models are identified. These procedures are described in Chapter 
6, but it is worthwhile to make this point now: adding exogenous variables is one way to 
remedy an identification problem of a nonrecursive model. However, this typically can 
only be done before the data are collected. Thus it is critical to evaluate whether a nonre-
cursive model is identified right after it is specified and before the study is conducted.

Before we continue, let’s apply the rules for counting observations, parameters, and 
degrees of freedom to the recursive model in Figure 5.3(a). Because there are v = 4 
observed variables in this model, the number of observations is 4(5)/2 = 10 (Rule 5.2). 
It is assumed that the constants (1) in the figure, such as that for the path D1 l Y1, 
are fixed parameters that scale the disturbances. Applying Rule 5.1 for counting free 
parameters gives us the results that are summarized in Table 5.1. Because the number 
of observations and free parameters for this model are equal (10), the model degrees of 
freedom are zero (dfM = 0). Exercise 3 for this chapter asks you to count the number of 
parameters and dfM for the other path models in Figure 5.3.

PA Research Example

Presented in Figure 5.5 is a recursive path model of presumed causes and effects of 
positive teacher–pupil interactions analyzed in a sample of 109 high school teachers and 
946 students by Sava (2002).5 This model reflects the hypothesis that both the level of 

5I renamed some of the variables in Figure 5.5 in order to clarify the meaning of low versus high scores in 
the Sava (2002) data set.
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school support for teachers (e.g., resource availability) and a coercive view of student 
discipline that emphasizes a custodial approach to education affect teacher burnout. All 
three variables just mentioned are expected to affect the level of positive teacher–pupil 
interactions. In turn, better student–teacher interactions should lead to better school 
experience and general somatic status (e.g., less worry about school) on the part of 
students. Note in Figure 5.5 the absence of direct effects from school support, coer-
cive control, and burnout to the two endogenous variables in the far right side of the 
model, school experience and somatic status. Instead, the model depicts the hypothesis 
of “pure” mediation through positive teacher–pupil interactions.

The article by Sava (2002) is a model in that it offers a clear account of specifica-
tion and a detailed description of all measures, including internal consistency score 
reliabilities. Sava (2002) reported the data matrices analyzed (covariance, correlation) 
and used an appropriate method to analyze a correlation matrix without standard devia-
tions. This author also reported all parameter estimates, both unstandardized and stan-

TABLE 5.1.  Number and Types of Free Parameters for the Recursive Path Model 
of Figure 5.3(a)

Endogenous variables

Model
Direct effects on  

endogenous variables Variances ( ) Covariances Total

Figure 5.3(a) X1 l Y1 X2 l Y1 X1, X2 X1  X2 10
X1 l Y2 X2 l Y2 D1, D2

Y1 l Y2

FIGURE 5.5. A path model of causes and effects of positive teacher–pupil interactions.
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dardized, with the appropriate standard errors. However, Sava (2002) did not consider 
equivalent path models. Detailed analysis of the path model in Figure 5.5 is discussed 
in Chapter 7.

CFA MODELS

Issues in the specification of CFA models are considered next.

Standard CFA Models

The technique of CFA analyzes a priori measurement models in which both the number 
of factors and their correspondence with the indicators are explicitly specified. Pre-
sented in Figure 5.6 is an example of a standard CFA model—the type most often 
tested in the literature—with two factors and six indicators. This model represents the 
hypothesis that (1) indicators X1–X3 measure factor A, (2) X4–X6 measure factor B, and 
(3) the factors covary. Each indicator has a measurement error term, such as E1 for indi-
cator X1. Standard CFA models have the following characteristics:

1. Each indicator is a continuous variable represented as having two causes—a 
single factor that the indicator is supposed to measure and all other unique 
sources of influence (omitted causes) represented by the error term.

2. The measurement errors are independent of each other and of the factors.
3. All associations between the factors are unanalyzed (the factors are assumed to 

covary).

FIGURE 5.6. A standard confirmatory factor analysis model.
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The lines with single arrowheads that point from a factor to an indicator, such as 
A l X1 in Figure 5.6, represent the presumed causal effect of the factor on the observed 
scores. Statistical estimates of these direct effects are called factor loadings or pattern 
coefficients, and they are generally interpreted as regression coefficients that may be 
in unstandardized or standardized form. Indicators assumed to be caused by underly-
ing factors are referred to as effect indicators or reflective indicators. In this sense, 
indicators in standard CFA models are endogenous, and the factors are exogenous vari-
ables that are free to vary and covary. This also describes reflective measurement. The 
numeral (1) that appears in the figure next to the paths from the factors to one of their 
indicators (e.g., B l X4) are scaling constants that assign a metric to each factor, which 
allows the computer to estimate factor variances and covariances. The logic behind this 
specification and another option to scale factors is discussed in the next chapter, but 
scaling the factors is required for identification.

Each measurement error term in Figure 5.6 represents unique variance, a factor-
analytic term for indicator variance not explained by the factors. Like disturbances in 
path models, measurement errors are proxy variables for all sources of residual variation 
that are not explained by the model. That is, they are unmeasured exogenous variables, 
so the symbol  appears next to each of the error terms in the figure. The measure-
ment errors in Figure 5.6 are specified as independent, which is apparent by the absence 
of the symbol for an unanalyzed association ( ) that connects pairs of measurement 
error terms. This specification assumes that all omitted causes of each indicator are 
unrelated to those for all other indicators in the model. It is also assumed that the meas-
urement errors are independent of the factors.

Two types of unique variance are represented by measurement errors: random 
error (score unreliability) and all sources of systematic variance not due to the factors. 
Examples of the latter type include systematic effects due to a particular measurement 
method or the particular stimuli that make up a task. When it is said that SEM takes 
account of measurement error, it is the error terms in measurement models to which 
this statement refers. The paths in the figure that point to the indicators from the 
measurement errors represent the direct effect of all unmeasured sources of unique 
variance on the indicators. The constants (1) that appear in the figure next to paths 
from measurement errors to indicators (e.g., E1 l�X1) represent the assignment of a 
scale to each term.

The representation in standard CFA models that each indicator has two causes, 
such as

 A l X1 j E1

in Figure 5.6, is consistent with the view in classical measurement theory that observed 
scores (X) are comprised of two components: a true score (T) that reflects the construct 
of interest and a random error component (E) that is normally distributed with a mean 
of zero across all cases, or
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 X = T + E (5.2)

The rationale that underlies the specification of reflective measurement in a standard 
CFA model comes from the domain sampling model (Nunnally & Bernstein, 1994, 
chap. 6). In this view of measurement, effect indicators X1–X3 in Figure 5.6 should as a 
set be internally consistent. This means that their intercorrelations should be positive 
and at least moderately high in magnitude (e.g., > .50). The same should also hold for 
indicators X4–X6 in the figure. Also, correlations among indicators of the same factor 
should be greater than cross-factor correlations. The patterns of indicator intercorrela-
tions just described correspond to, respectively, convergent validity and discriminant 
validity in construct measurement. The domain sampling model also assumes that 
equally reliable effect indicators of the same construct are interchangeable (Bollen & 
Lenox, 1991). This means that the indicators can be substituted for each other without 
appreciably affecting construct measurement.

Sometimes the items of a particular indicator are negatively worded compared 
with other indicators of the same factor. Consequently, scores on that indicator will be 
negatively correlated with those from the other indicators, which is problematic from a 
domain sampling perspective. Suppose that a life satisfaction factor has three indicators. 
High scores on two indicators indicate greater contentment, but the third indicator is 
scaled to reflect degree of unhappiness, which implies negative correlations with scores 
from the other two indicators. In this case, the researcher could use reverse scoring or 
reverse coding, which reflects or reverses the scores on the negatively worded indicated 
indicator. One way to reflect the scores is to multiply them by –1.0 and then add a con-
stant to the reflected scores so that the minimum score is at least 1.0 (Chapter 3). In this 
example, high scores on the unhappiness indicator are reflected to become low happi-
ness scores, and vice versa. Now intercorrelations among all three indicators of the life 
satisfaction factor in this example should be positive.

It makes no sense to specify a factor with effect indicators that do not measure 
something in common. For example, suppose that the variables gender, ethnicity, and 
education are specified as effect indicators of a factor named “background” or some 
similar term. There are two problems here. First, gender and ethnicity are unrelated in 
representative samples, so one could not claim that these variables somehow measure a 
common domain.6 Second, none of these indicators, such as a person’s gender, is in any 
way “caused” by the some underlying “background” factor.

A common question about CFA concerns a minimum number of indicators per fac-
tor. In general, the absolute minimum for CFA models with two or more factors is two 
indicators per factor, which is required for identification. However, CFA models—and 
SR models, too—with factors that have only two indicators are more prone to problems 
in the analysis, especially in small samples. Also, it may be difficult to estimate measure-

6L. Wothke, personal communication, November 25, 2003.
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ment error correlation for factors with only two indicators, which can result in a speci-
fication error. Kenny’s (1979) rule of thumb about the number of indicators is apropos: 
“Two might be fine, three is better, four is best, and anything more is gravy” (p. 143; 
emphasis in original.)

Dimensionality of Measurement

The specifications that (1) each indicator loads on a single factor and (2) the error terms 
are independent describe unidimensional measurement. The first specification just 
mentioned describes restricted factor models. If any indicator loads on q 2 factors or 
if its error term is assumed to covary with that of another indicator, then multidimen-
sional measurement is specified. For example, adding the direct effect B l X1 to the 
model of Figure 5.6 would specify multidimensional measurement. There is controversy 
about allowing indicators to load on multiple factors. On the one hand, some indicators 
may actually measure more than one domain. An engineering aptitude test with text 
and diagrams, for instance, may measure both verbal and visual-spatial reasoning. On 
the other hand, unidimensional models offer more precise tests of the convergent and 
discriminant validity. For example, if every indicator in Figure 5.6 were allowed to load 
on both factors, an exploratory factor analysis (EFA) model that allows correlated fac-
tors (an oblique rotation) would be specified. It is unrestricted factor models that are 
estimated in EFA. (Other differences between CFA and EFA are outlined below.)

The specification of correlated measurement errors is a second way to represent 
multidimensional measurement. An error correlation reflects the assumption that the 
two corresponding indicators share something in common that is not explicitly repre-
sented in the model. Because error correlations are unanalyzed associations between 
latent exogenous variables (e.g., E1  E2), what this “something” may be is unknown 
as far as the model is concerned. Error term correlations may be specified as a way to 
test hypotheses about shared sources of variability over and beyond the factors. For 
example, the specification of error correlations for repeated measures variables repre-
sents the hypothesis of autocorrelated errors. The same specification can also reflect 
the hypothesis of a common method effect. In contrast, the absence of a measurement 
error correlation between a pair of indicators reflects the assumption that their observed 
correlation can be explained by their underlying factors. This refers to the local inde-
pendence assumption that the indicators are independent, given the (correctly speci-
fied) latent variable model.7

The specification of multidimensional measurement makes a CFA model more 
complex compared with a standard (unidimensional) model. There are also implica-
tions for identification. Briefly, straightforward ways can be used to determine whether 
a standard CFA model is identified, but this may not be true for nonstandard models 

7W. Wothke, personal communication, November 24, 2003.
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(Chapter 6). It is important to evaluate whether nonstandard CFA models are identified 
when they are specified and before the data are collected. This is because one way to 
respecify a nonidentified CFA model is to add indicators, which increases the number of 
observations available to estimate effects.

Other Characteristics of CFA

The results of a CFA include estimates of factor variances and covariances, loadings of 
the indicators on their respective factors, and the amount of measurement error for each 
indicator. If the researcher’s model is reasonably correct, then one should see the fol-
lowing pattern of results: (1) all indicators specified to measure a common factor have 
relatively high standardized factor loadings on that factor (e.g., > .70); and (2) estimated 
correlations between the factors are not excessively high (e.g., < .90 in absolute value). 
The first result indicates convergent validity; the second, discriminant validity. For 
example, if the estimated correlation between factors A and B in Figure 5.6 is .95, then 
the six indicators can hardly be said to measure two distinct constructs. If the results of 
a CFA do not support the researcher’s a priori hypotheses, the measurement model can 
be respecified in the context of model generation (Chapter 1).

Hierarchical confirmatory factor analysis models depict at least one construct 
as a second-order factor that is not directly measured by any indicator. This  exogenous 
second-order factor is also presumed to have direct effects on the first-order  factors, 
which have indicators. These first-order factors are endogenous and thus do not have 
 unanalyzed associations with each other. Instead, their common direct cause, the 
 second-order factor, is presumed to explain the covariances among the first-order 
 factors. Hierarchical models of intelligence, in which a general ability factor (g) is pre-
sumed to underlie more specific ability factors (verbal, visual-spatial, etc.), are examples 
of theoretical models that have been tested with hierarchical CFA. This special type of 
CFA model is discussed in Chapter 9.

Contrast with EFA

A standard statistical technique for evaluating measurement models is EFA. Originally 
developed by psychologists to test theories of intelligence, EFA is not generally con-
sidered a member of the SEM family. The term EFA refers to a class of procedures that 
include centroid, principal components, and principal (common) factor analysis meth-
ods that differ in their statistical criteria used to derive factors. This technique does not 
require a priori hypotheses about factor–indicator correspondence or even the number 
of factors. For example, all indicators are allowed to load on every factor; that is, EFA 
tests unrestricted factor models. There are ways to conduct EFA in a more confirmatory 
mode, such as instructing the computer to extract a certain number of factors based on 
theory. But the point is that EFA does not require specific hypotheses in order to apply 
it.
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Another difference between CFA and EFA is that unrestricted factor models are not 
generally identified. That is, there is no single, unique set of parameter estimates for a 
given EFA model. This is because an EFA solution can be rotated an infinite number of 
ways. Among rotation options in EFA—varimax, quartimin, and promax to name just 
a few—researchers try to select one that clarifies factor interpretation. A parsimonious 
explanation in EFA corresponds to a solution that exhibits simple structure where 
each factor explains as much variance as possible in nonoverlapping sets of indicators 
(Kaplan, 2009). There is no need for rotation in CFA because factor models estimated in 
this technique are identified. Factors are allowed to covary in CFA, but the specification 
of correlated factors is not required in EFA (it is optional).

Cause Indicators and Formative Measurement

The assumption that indicators are caused by underlying factors is not always appropri-
ate. Some indicators are viewed as cause indicators or formative indicators that affect 
a factor instead of the reverse. Consider this example by Bollen and Lennox (1991): The 
variables income, education, and occupation are used to measure socioeconomic status 
(SES). In a standard CFA model, these variables would be specified as effect indicators 
that are caused by an underlying SES factor (and by measurement errors). But we usually 
think of SES as the outcome of these variables (and others), not vice versa. For example, a 
change in any one of these indicators, such as a salary increase, may affect SES. From the 
perspective of formative measurement, SES is a composite that is caused by its indica-
tors. Chapter 10 deals with formative measurement models.

CFA Research Example

Presented in Figure 5.7 is a standard CFA measurement model for the Mental Process-
ing scale of the first edition Kaufman Assessment Battery for Children (KABC -I) (Kauf-
man & Kaufman, 1983), an individually administered cognitive ability test for children 
2½ to 12½ years old. The test’s authors claimed that the eight subtests represented in 
the figure measure two factors, sequential processing and simultaneous processing. 
The three tasks believed to reflect sequential processing all require the correct recall 
of auditory stimuli (Word Order, Number Recall) or visual stimuli (Hand Movements) 
in a particular order. The other five tasks represented in the figure are supposed to 
measure more holistic, less order-dependent reasoning, or simultaneous processing. 
Each of these tasks requires that the child grasp a “gestalt” but with somewhat differ-
ent formats and stimuli.

The results of several CFA analyses of the KABC -I conducted in the 1980–1990s 
generally supported the two-factor model presented in Figure 5.7 (e.g., Cameron et al., 
1997). However, other results have indicated that some subtests, such as Hand Move-
ments, may measure both factors and that some of the measurement errors may covary 
(e.g., Keith, 1985). Detailed analysis of the model in Figure 5.7 with data for 10-year-olds 
from the KABC -I’s normative sample is described in Chapter 9.
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STRUCTURAL REGRESSION MODELS

The most general kind of core structural equation model is an SR model, also called a 
full LISREL model. This term reflects the fact that LISREL was one of the first computer 
programs to analyze SR models, but any contemporary SEM computer tool can do so 
now. An SR model is the synthesis of a structural model and a measurement model. 
As in PA, the specification of an SR model allows tests of hypotheses about direct and 
indirect causal effects. Unlike path models, though, these effects can involve latent vari-
ables because an SR model also incorporates a measurement component that represents 
observed variables as indicators of underlying factors, just as in CFA. The capability to 
test hypotheses about both structural and measurement relations within a single model 
affords much flexibility.

Presented in Figure 5.8(a) is a structural model with observed variables—a path 
model—that features single-indicator measurement. The observed exogenous variable 
of this model, X1, is assumed to be measured without error, an assumption usually 
violated in practice. This assumption is not required for the endogenous variables of 
this model, but measurement error in Y1 or Y3 is manifested in their disturbances. The 
model of Figure 5.8(b) is an SR model with both structural and measurement compo-
nents. Its measurement model has the same three observed variables represented in the 
path model, X1, Y1, and Y3. Unlike the path model, each of these three indicators in the 
SR model is specified as one of a pair for an underlying factor.8 Consequently, (1) all 
the observed variables in Figure 5.8(b) have measurement error terms, and (2) effects 
for the endogenous latent variables, such as direct effects (e.g., A l B) and disturbance 
variances (for DB and DC) are all estimated controlling for measurement error in the 
observed variables.

FIGURE 5.7. A confirmatory factor analysis model of the first-edition Kaufman Assessment 
Battery for Children.

8I saved space in Figure 5.8 by showing only two indicators per factor, but remember that it is generally 
better to have at least three indicators per factor.
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This SR model of Figure 5.8(b) also has a structural component that depicts the 
same basic pattern of direct and indirect causal effects as the path model but among 
latent variables (A l B l C) instead of observed variables. The structural model of 
Figure 5.8(b) is recursive, but it is also generally possible to specify an SR model with a 
nonrecursive structural model. Each latent endogenous variable in the structural model 
of Figure 5.8(b) has a disturbance (DB, DC). Unlike path models, the disturbances of 
SR models reflect only omitted causes and not also measurement error. For the same 
reason, path coefficients of the direct effects A l B and B l C in Figure 5.8(b) are cor-
rected for measurement error, but those for the paths X1 l Y1 and Y1 l Y3 in Figure 
5.8(a) are not.

The model of Figure 5.8(b) could be described as a fully latent SR model because 
every variable in its structural model is latent. Although this characteristic is desirable 
because it implies multiple-indicator measurement, it is also possible to represent in 
SR models an observed variable that is a single indicator of a construct. This reflects 
the reality that sometimes there is just a single measure of a some construct of interest. 
Such models could be called partially latent SR models because at least one variable 
in their structural model is a single indicator. However, unless measurement error of a 
single indicator is taken into account, partially latent SR models have the same limita-
tions as path models outlined earlier. A way to address this problem for single indicators 
is described in Chapter 10.

FIGURE 5.8. Examples of a path analysis model (a) and a structural regression model (b).
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SR Model Research Example

Within a sample of 263 full-time university employees, Houghton and Jinkerson (2007) 
administered multiple measures of four constructs, including constructive (opportu-
nity-oriented) thinking, dysfunctional (obstacle-oriented) thinking, subjective well-
being (sense of psychological wellness), and job satisfaction. Based on their review of 
theory and empirical results in this area, Houghton and Jinkerson (2007) specified the 
four-factor fully latent SR model presented in Figure 5.9. The structural part of this 
model represents the hypotheses that (1) dysfunctional thinking and subjective well-
being each have direct effects on job satisfaction; (2) constructive thinking has a direct 
effect on dysfunctional thinking; (3) the effect of constructive thinking on subjective 
well-being is mediated by dysfunctional thinking; and (4) the effects of constructive 
thinking on job satisfaction are mediated by the other two factors.

The measurement part of the SR model in Figure 5.9 features three indicators per 
factor. Briefly, indicators of (1) constructive thinking include measures of belief evalua-
tion, positive self-talk, and positive visual imagery; (2) dysfunctional thinking includes 
two scales regarding worry about performance evaluations and a third scale about need 
for approval; (3) subjective well-being include ratings about general happiness and two 
positive mood rating scales; and (4) job satisfaction include three scales that reflect one’s 
work experience as positively engaging.

FIGURE 5.9. A structural regression model of factors of job satisfaction.
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The article by Houghton and Jinkerson (2007) is exemplary in that the authors 
describe the theoretical rationale for each and every direct effect among the four factors 
in the structural model, provide detailed descriptions of all indicators including internal 
consistency score reliabilities, report the correlations and standard deviations for the 
covariance data matrix they analyzed, and test alternative models. However, Houghton 
and Jinkerson (2007) did not report unstandardized parameter estimates, nor did they 
consider equivalent versions of their final model. The detailed analysis of this SR model 
is described in Chapter 10.

EXPLORATORY SEM

Recall that Mplus has capabilities for exploratory structural equation modeling (ESEM) 
(Chapter 4). In ESEM, some parts of the measurement model are unrestricted instead of 
restricted. That is, the analysis incorporates features of both EFA and SEM. This type 
of analysis may be suitable when the researcher has weaker hypotheses about multiple-
indicator measurement of some constructs than is ordinarily represented in CFA or SR 
models. Consider the ESEM model presented in Figure 5.10, which is also described in 
the Mplus 6 manual (Muthén & Muthén, 1998–2010, p. 90). The measurement model 
for factors A and B in the figure is an unrestricted EFA model where the indicators are 
allowed to load on every factor. In Mplus, the factor solution for this part of the model 
will be rotated according to the method specified by the user. Factors A and B are scaled 
by fixing their variances to 1.0, which standardizes them. In contrast, the measurement 
model for factors C and F in the figure is restricted where each indicator loads on a single 
factor. There is a structural model in Figure 5.10, too, and it features direct or indirect 
effects from the exogenous factors A and B onto the endogenous factors C and F. See 
Asparouhov and Muthén (2009) for more information about ESEM.

SUMMARY

Considered in this chapter were the specification of core SEM models and the types of 
research questions that can be addressed in their analysis. Path analysis allows research-
ers to specify and test structural models that reflect a priori assumptions about spuri-
ous associations and direct or indirect effects among observed variables. Measurement 
models that represent hypotheses about relations between indicators and factors can 
be evaluated with the technique of confirmatory factor analysis. Structural regression 
models with both a structural component and a measurement component can also be 
analyzed. Rules that apply to all the kinds of models just mentioned for counting the 
number of observations and the number of model parameters were also considered. The 
counting rules just mentioned are also relevant for checking whether a structural equa-
tion model is identified, which is the topic of the next chapter.
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with a good sense of common specification pitfalls to avoid.
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EXERCISES

 1. What is the “explanation” of Figure 5.3a about why scores on Y1 and Y2 are cor-
related?

 2. Does the CFA model of Figure 5.6 have a structural component?

 3. Count the number of free parameters for the path models of Figures 5.3(b)–
5.3(d).

FIGURE 5.10. An exploratory structural equation model.
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 4. Calculate the model degrees of freedom for (a) Figure 5.5, (b) Figure 5.7, and 
(c) Figure 5.9.

 5. How are covariates represented in structural models?

 6. Respond to this question: “I am uncertain about the direction of causality 
between Y1 and Y2. In SEM, why can’t I just specify two different models, one 
with Y1 l Y2 and the other with Y2 l Y1, fit both models to the same data, and 
then pick the model with the best fit?”

 7. What is the difference between a measurement error (E) and a disturbance 
(D)?

 8. Specify a path model where the effects of a substantive exogenous variable X1 
on the outcome variable Y2 are entirely mediated through variable Y1. Also 
represent in the model the covariate X2 (e.g., level of education in years).

 9. What is the role of sample size in SEM?


